Secure Processing

By Jason Grembl

Secure Processing

e ODbjectives

— Secure Error Handling
— Secure Deployment
— Secure Storage

Secure Processing by Jason Grembi

Secure Processing

e Secure Error Handling

— Motivated attackers like to see error messages
and look for information that may give clues

« Application errors expose a lot of information about
the code and its environment

e Errors can tell attackers database information
such as table names and columns, names of
objects used, code location, Web server
Information, and even IP addresses

Secure Processing by Jason Grembi 3

Secure Processing

 Two Types of Errors

— Compile-time errors are found at compile
time and the code will not execute until they
are fixed

— Run-time errors occur when a data flow does
not flow as expected

Secure Processing by Jason Grembi

Secure Processing

 Handling Errors

— The following are the steps that need to be
performed while handling errors:
e Code your own routine to catch errors
» Create application-specific exceptions
 Manage the views

Secure Processing by Jason Grembi

Secure Processing

e Code Your Own Routine

e Control the logic by writing an error-handling
routine that catches specific run-time errors

 In an error-handling routine, every code statement
has to be surrounded by traditional try{} catch{}
blocks so that the appropriate exception can be
caught and handled

* There is no such thing as error-free code; all
languages throw errors and all applications have
errors — catch them before they catch you.

Secure Processing by Jason Grembi 6

SR
Thiz method i1z called to add a refer a friend contact into the a database
* Oreturn vold
¥ Wparam myForm (ReferFriendForm) An input object
#* @exception Exception An SQL exception occurred selecting against table.
* .
public =tatic woid getReferFriendiFeferFriendFormn myForm)
throws Exception

final String METHOD = "getiddReferFriendi)";

debug(CLASS + " " + METHOD + "==:Begin"i:
if (myForm.getClass()l= AdotionForm){

return:
i

UserBean userBean = nyForm.getlUserBean().
Applicationlogger logger = Applicationlogger getlnstancel)

String query = "SELECT + FROM SOME TABLE WHEREE I _TUSEE. FNAME " +

+uszerbBean getFirstName(1+ 3
ey

iﬂebﬁgf"ﬁﬁl looks like this “n"+gquery):

+ catch (Exception &) {

dehug(ﬁlﬁSS it +~HETHﬂﬂ:+ "==55QLEHDEptiDn occurred DEEparing“SQI statenent " +
qUETT) |

+ofinally.
debug({ "Done with "+HETHOD +CLASS):
12

Secure Processing by Jason Grembi

Secure Processing

— Creating Application-Specific Exceptions
 When catching exceptions, the application needs to
determine what to do when the exception occurs

* To help make this decision, an encapsulated error
class can be created to handle events for all use
cases/misuse cases within the application

» After the ApplicationError class Is created, it can be
embedded within the code in the catch blocks

« Exception handling is the cornerstone for all secure
code

Secure Processing by Jason Grembi 8

mablic zla=s ApplicationError extend=s Exceptiond

~x% Error Hessage *7
private String errorMes=sage;

%% BException -
private Exception exception;

#%#% Claszs Hame in which exception occurred. #®0
private String classHane:

%% Method Hame in which exception occurred. #0
private String methodHame;

%% [[zer Friendlv Error MHessage. #*7
private String userViewvMessage:

P

* i default constructor.

* .

public ApplicationError() {
super()

SR

* & constructor that a String object that contains
* an Error nessage.

*

rublic ApplicationError(String erroriessage) {

| super(erroreszage) ;

i

SRR

* Feturn=s the clazsHams.

* @return String

*®

rublic String getClaszsHanse() {
return clazsHamne;

¥

SRR

* Feturn=s the erroriesz=zags.

#* @return String

*®

rublic String getErrorMessagei) {
return erroresszage;

¥

SRR

* Feturns the exception.

@return Exception

*

rublic Exception getExceptiond)
return exception;

2

Secure Processing

 Managing the Views

— What you choose to tell the user in error
messages IS up to you, but it should
specifically benefit them

— The developers need to see the raw error
codes, the invalid SQL statements, or the
object names of the defective code

— The users, on the other hand, should see only
friendly messages that gracefully tell them
only what they need to know

Secure Processing by Jason Grembi 10

Secure Processing

S

*®

*® @zuthor Jason

*®,7

public class ApplicaitonErrorHandler {

LT

* Construstor for S5

*®

public ApplicaitonErrorHandler() {
zuper()

puiblic ActionForwvard execute(Ezxzception ex. EzxceptionConfig as. ActionMapping mapping.
ActionForm formInstance, HttpServletFequest request HttpServletResponse responses)
throws ServletException
Applicationlogger logger = Applicationlogger . getln=stancel)
logger . writelogiex, request) ;

reqguest =etAttributel "nyEzception” . exl

return new ActionForwardi{as.getPathi)):

b

Secure Processing by Jason Grembi

Secure Processing

Creating Self-Monitoring Code

— You want to be able to trace every step, action, and
error the code executes.

— Examples of paths of execution, events include the
number of times a single user has tried to log on,
submit values, or request sensitive information that
exceeds “normal”’ conditions

Secure Processing by Jason Grembi 12

¥
Location gloci=gridipi.readEByLocationlID(gridcCompanyId]

if (gloc.getUnigueldiName () .equals (company.getUnigqueIdiame ()]
matchCompanies.add (new CompBeani(gloc, gloci.getUltimatelUnigueIdill]);

B
Foelge If (ALTAS ULT LOC CODE !'= mull £& ALILS TLT LOC CODE.trimi().lengthi() > 0]

Jlogger.debug (CLASENAME4" call ==:rreadUltimate™) :
regquest.setittribute (TaliasRecs™, MTorua™)
Location gloc=gridipi.readUltimate (ALIAS ULT LoC CODE, company.getUnigueldNeame()]:

if (gloec '= mull £& gloc.getUltimatelUniguelId|) .equals(gloc.getUnigqueIdil)){
gridCompanyId = gloc.getLocationId();
if (gloc.getiuthorityId() '= -=1)
gridCompanvyId=gloc.getiuthorityIdi) ;
if [(gloc.getUltimatelhigquelId() !'= null)
Location glociZ=gridipi.readByUnigquell(gloc.getUltimatelniquelIdi), gloc.getUnigqueldMName ()] :
if(glocd '= mull £& gloc2.gethuthorityId() !'= -1)

gridCompanyId=glocZ.getliuthorityIdi)
¥
Location gloci=gridipi.readbBylocationlID(gridcompanyId)
matchCompanies.add (new CompBean(gloc, gloci.getUltimatelUnigueIdil)]):
b
Foelge If (ALTIAS LOC CODE !'= null && ALLILS LOC CODE.trimi).lengthi] > 0]+
Jlogger.debug (CTASENAME4" call ==:rreadByUnigquelID™)
reguest.setittribute (faliasRecs™, Mtrus®):
Location gloc=gridipi.readByUniquelD (ALIAS LoC CODE, company.getUnigueIdNeame ()] :

if (gloc '= nuall){
Jdogger.debug (CLASSNAME+" gloc '= nmull™);
gridCompanvyId = gloc.getLocationId() ;
if (gloc.getiuthorityId() '= -1)
gridCompanvyId=gloc.getluthorityIdi) ;
if [(gloc.getUltimatelnigquelId() !'=s mull) ¢

Jogger..debug (CTASENAMEL" cgll ==:rgetlUltimateUnigqueId™)
Location glocid=gridipi.readByUnigquelDl(gloc.getUltimatelniqueldl), gloc.getUnigqueldilame)) :
if (gloc: '= null £& glocZ.getliuthorityId() !'= -1}
gridCompanvyId=glocd.getiuthorityId() ;
+
Jogger.debug (CLASSNAME+" call ==rreadbyLocationID™) ;
Location gloci=gridipi.readbByLocationlDi(gridcompanyId)
if [(gloci.getlegalName () '= nmull && glocdi.getlegalName () .trimi() .lengthi() > 01

Secure Processing

e Secure Deployment
— Many manual tasks
— To many things to go wrong
— Usually done in late hours of over weekend

Secure Processing by Jason Grembi

Secure Processing

e Secure Deployment
— Many manual tasks
— To many things to go wrong
— Usually done in late hours of over weekend

Secure Processing by Jason Grembi

Secure Processing

— Build Management

 ANT (Another NeatTool), located at
http://ant.apache.org/, is an XML-based tool that calls
out targets (or specific tasks) in a treelike structure

* Developers use ANT version control tools when doing
code deployments from one environment to another

* ANT replaces all the manual tasks that developers do
before deploying code

— FTP (FileTransfer Protocol) code: Automatically FTPs code files
from one machine to another

— Get code: Automatically interfaces with version control software

— Move code: Takes files or directories and moves them
anywhere desirable

— Message code: Changes parameters automatically
— Compile code: Turns ASCII files into class files (binary)

Secure Processing by Jason Grembi 16

kproject name="appHame" default="jarApp" basedir="C s=sd“ant":

¢l—— rcreate directoy structure ——:
<property file="C:~s=d~ant~S{propfilel}"-:
{property name="appHamse" walus="c:"
{property name="project" walue="“ssdwant"
¢property name="build" wvalus="“build"
{property name="deplovDir" walus="c:“==d“ant>deploy" -
{property name="src' wvalus="“src"
¢property name="srclDir" walue="s{appHane}s{project}si{=zrc}" >
¢property name="buildDir" walue="S${appHamne}${project}s{build}" -

sproperty name="ant" wvalue="C ~ant»apache-ant-1 6 2~lib~ant jar" -
{property name="clas=spath" walus="%{ant}"~:

¢l— copy all Jawa Files from src to build and exclude the class files—:
<target name="copylir" description="copy all Jawva File=s from =rc to build":
scopy todir="${buildDix}":
¢fileset dir="4%${=rcDir}" excludez="#**-% cla=z"-:

<SCoOpy »
<Atarget x
{l—— touch all the files ——:
<target name="timnestamp" description="adds timestamnp to logfile" depends="copyDir" :
“tstamnp:
¢format property="touch.time" pattern="MM-dd-vyyy hh:mm aza"- >
{oStztamps
<echo messzage="refreshScreen =cript started on ${touch.timel}"~:
<Starget
¢l—=—— Turn OFF debugs ——3

{target name="turndf fDebugs" dependz="tinsstanp” i1f="TURH_CFF_DEBUGS" description="Turn off debugs when Prod Deplov":
¢replace dir="${buildDir}"

token="private final =tatic boolean DEBUG = trues;"
value="private final =tatic boolean DEBUG = fal=e;"-:
< target:
{l—— Compile jawa Files —3

{target name="javac'! dependz="turnffiDebugz" description="compiles the java file=s"
¢javac srocdir="#{buildDir}" destdir="${buildlir}" classpath="%{clas=spath}" debug="on":
LS javacy

<~ target:

¢l—— Jar up the Filez ——:
{target name="jardipp" description="this creates a jar file" depend=="jawvac":
{jar jarfile="${deplovDir}-app.jar" basedir="4${buildDir}"-:
<starget

{sproject:

Secure Processing

o Static Code Analysis

— Static code analyzers scan (parse) through static
code and analyze the code base for security
vulnerabilities (such as input fields and buffer
overflows)

— A number of static code analyzers are available on
the market

— Tools come with sophisticated code parsers, but
they also have reporting features

Secure Processing by Jason Grembi

18

Secure Processing

Code Reviews and Inspections

— Code reviews are people-intensive verification
techniques that are conducted either formally or
iInformally that allow peers to read code statements
and look for common security vulnerabilities, such as
hard-coded IDs or passwords, and general quality
features

— Reviewing code as a team is actually a great
opportunity for the strongest skilled developers to
share knowledge, rationale, and guidance with the
entry/mid-level developers

Secure Processing by Jason Grembi 19

Secure Processing

 Code Reviews and Inspections (continued)
— The following are the steps to a successful code review:

The developer of the use case prints out all the code and
makes copies for each participant

At the meeting, each participant walks through the use
case, step-by-step, and the programmer talks about each
activity

Every code statement is analyzed and reviewed by the
participants against a checklist of rules and guidelines

As issues or concerns come up during the meeting, the
code is highlighted on the hard copy and notes or
Instructions are taken

After the meeting, it is determined if another walk-through is
needed or if the business analyst needs to be consulted for
any questions

Secure Processing by Jason Grembi 20

Secure Processing

« Verifying System Documentation

— Before you put the test case to rest and go on to the next one,
verify that all system documentation is finalized and up to date

— System documentation is a lot like life insurance—you might
never need to use it after it is finalized, but the one time you
need it to be available and accurate, it will be there for you

— The following activities will keep the software documentation up
to date:

» Verify that the use case documentation says what the
software does

» Verify traceability on the current use case throughout the
whole life cycle

» Verify the current version
» Update the Application Guide

Secure Processing by Jason Grembi 21

Secure Processing

 Introducing Software Upgrades

« Updating the supporting operating systems,
application servers, or tools can be exciting yet
scary (in terms of security)

— Treat any new upgrade as a threat to your architecture

— New features offer new solutions, and a redesign of your
application might be necessary to take advantage of this

Secure Processing by Jason Grembi 22

Secure Processing

 Introducing New Developers

o After a few successful years of secure
programming on one assignment, developers are
likely to go onto another new project and reuse the
Application Guide and their skills to help other
projects get started

* The introduction of new people can be a security
risk during software maintenance

— They don’t have the background knowledge that the
developers who wrote the software do

Secure Processing by Jason Grembi 23

Secure Processing

* Proving Your Work

 Your proof will be evidenced in the following:
— Application Guide
— Use case
— Misuse case
— Code reviews
— Test scripts
— Deployment
— Secure Logs

Secure Processing by Jason Grembi

24

Secure Processing

— Secure Storage
» A code repository is used for code storage

* Code repositories allow that programmer to check in the
code from the workstation and into a centralized data
house

Secure Processing by Jason Grembi 25

Secure Processing

e Secure Storage

— Offers an opportunity to centralize the backups of
source code and ensure that current backups of
the entire repository are available for recovery In

case of a failure

— Code sharing: All other programmers have access to the latest
and greatest without stepping on one another’s code

— Versioning/baseline: Developers can manage which features go
out in the next version

— Centralizing storage: This allows the code to be deployed from
one centralized place

Secure Processing by Jason Grembi 26

Secure Processing

e Secure Storage

— Open source code is great to use and highly
encouraged within the software development, but
don’t assume it is secure

— Wherever the JAR files (or EXEs and DLLs) are
stored, make sure no one else has access rights to
that directory

Secure Processing by Jason Grembi

27

Secure Processing

e Secure Storage

— Anyone with access to certain directories can un-JAR
a file, tamper with a class, then re-JAR that file and
put it back in the classpath

— It would take even very smart developers weeks or
months before figuring out a JAR file has been
tampered with

— JAR files almost never get reviewed and most people
do not know what should be in there anyway

Secure Processing by Jason Grembi 28

Secure Processing

e Secure Storage

— A good way to sense if a file has been tampered with

IS to audit the dates on each file. You can do this by a
UNIX Shell job:

#i bindkah
F=N2007-10-27"
b="20da-03-22"
if Il #ii &iecho fa | tr —d "-"} - Efecho Fb | tr -d
print "correct®
else
print "failure"
£i

E=r1 L} =ge O] o then

Secure Processing by Jason Grembi 29

Secure Processing

e Secure Storage

— A good way to lock down files is through OpenSSL

Rl V¥ o

8] application GuideSample 245KB Microsoft Word Dac. .,
ﬁl Application GuideSarnple, bF 332 KB EF File

enter bf-chc Encryptiﬁn passuurﬂ:
Uerifying — enter hf—chc encryption password:

Cistempr

e e

8/21/2005 12:45 af
4/14/2010 11:32 P1

=101 x|

115 aM
7 PM
e P
E7 P
£ P
1:35 AP
i34 P
i4d P
11 PM
12:29F
09 PR
5:32 Ph
4:51 PM
Ed A

gl ar

E)

T

(05 A
ES P

P4 P

(il i

Secure Processing by Jason Grembi

30

Secure Processing

e Summary

— Secure Error Handling
e Secure Handling
e Secure Reporting
 Incident Response

— Secure Deployment
e Automated Process
e Security Scan
— Secure Storage
e Locking Down the File Path

Secure Processing by Jason Grembi

31

